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We study the distribution of the end-to-end distance of continuous-time self-
avoiding random walks (CTRW) in dimension four from two viewpoints. From
a real-space renormalization-group map on probabilities, we conjecture the
asymptotic behavior of the end-to-end distance of a weakly self-avoiding ran-
dom walk (SARW) that penalizes two-body interactions of random walks in
dimension four on a hierarchical lattice. Then we perform the Monte Carlo
computer simulations of CTRW on the four-dimensional integer lattice, paying
special attention to the difference in statistical behavior of the CTRW compared
with the discrete-time random walks. In this framework, we verify the result
already predicted by the renormalization-group method and provide new results
related to enumeration of self-avoiding random walks and calculation of the
mean square end-to-end distance and gyration radius of continous-time self-
avoiding random walks.

KEY WORDS: Continuous-time self-avoiding random walk; renormaliza-
tion-group map; dimerization algorithm; Monte Carlo simulation.

1. INTRODUCTION

Self-avoiding random walk models appeared in chemical physics as models
for long polymer chains. Roughly speaking, a polymer is composed of a
large number of monomers which are linked together randomly but cannot
overlap. This feature is modelled by a self-repulsion term.

To state a self-repulsion term, Floryu> used a self-avoiding random
walk (SARW). A self-avoiding random walk of the number of steps n is a
simple random walk which visits no site more than once. Although this



simple model possesses some qualitative features of polymers, it turns
out to be very difficult for obtaining rigorous results and Monte Carlo
experiments are commonly used to study this problem. In this paper, we
present some results of Monte Carlo experiments for CTRW. CTRW
models are useful for studing random walks on random lattices with
traps,'2' relaxation of complicated systems (e.g., glasses and polymers)/31

migration of a classical dynamical system between regions of configuration
space,'4' energy migration on regular lattices/5' transport of radioactive
isotopes in neural membrane channels'6' and homogeneous nucleation of
vapor condensation/7' Specially, two physical applications, the migration
of photons in a turbid medium and the theory of diffusion-controlled reac-
tions in a random medium, suggest that it might be useful to study proper-
ties of the CTRW/8'

On the other hand, to obtain analytical results we can take advantage
of the several measures on random walks which favor self-avoiding walks
and are in the same universality class as the SARWs. In this paper, we use
weakly SARW (so called Domb-Joyce model or self-repellent walk). This
is a measure on the set of simple walks in which two-body interactions are
discouraged but not forbidden. Here, these interactions are penalized by a
factor e-Measure of (Belf-)imen»ction)j ^ > Q bejng & smajj constant This factor

is needed to make the process tend to avoid itself.
In Section 2 we use a method already reported in the literature'9'10) to

study, from an original point of view, the asymptotic logarithmic correc-
tion to the end-to-end distance of CTRW in dimension four, weakly self-
avoiding, thereby providing a new stochastic meaning to the exponent of
the logarithmic correction. We believe that this result can be extended to
weakly SARW on a hypercubic lattice. In Section 3, we describe our Monte
Carlo experiments on an integer lattice for the CTRW to verify the result
predicted in Section 2. In the first case the random walks are not nearest
neighbords (this would be trivial because of the hierarchical lattice on
which our renormalization group map is implemented), whereas in the
second case they are nearest neighbords.

The paper is organized as follows. In Section 2, we present the
heuristic procedure to obtain the end-to-end distance of the weakly con-
tinuous-time SARW on the hierarchical lattice. We report on the new
probabilistic meaning of the result. In Section 3, we present Monte Carlo
experiments for continuous-time SARW on a four dimensional integer lat-
tice Z4 and verify the goodness of our heuristic approach. In Appendix 1,
we discuss the enumeration of SARWs, the corresponding end-to-end dis-
tance and gyration radius. Appendix 2 is devoted to a short description of
the statistical tools we use to get the best-fit curves. Finally, summary and
discussion are presented.
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2. ASYMPTOTIC END-TO-END DISTANCE

In refs. 9 and 10 we have constructed a map on a hierarchical random
walk for SUSY l<f>4 to study, from the stochastic point of view, the renor-
malization of this model. In the present paper we intend to use the very
same map, through the McKane-Parisi-Sourlas theorem, to give an
heuristic explanation to the logarithmic correction of the end-to-end dis-
tance, £/=4, for the weakly SARW on a hierarchical lattice.

From studying the renormalization of the weakly SARW that
penalizes two-body interactions (or double-crossing random walks) we can
find the stochastic expression for the leading order contribution to the
mass or killing rate for the process. In this paper, we use this to build a
multiplicative scheme and predict the asymptotic logarithmic correction to
the end-to-end distance of the weakly SARW, d = 4. For weakly SARW,
we propose the standard scaling factor for local times of the renormaliza-
tion transformation by including, up to O(A.), the contribution of the self-
repulsion term to renormalized local times. Namely, from the renormaliza-
tion-group map on weakly SARW, renormalized local times are generated
from the interaction. In the field theoretical approach this corresponds to
generating mass. Equivalently, we can say that the interaction kills the
process at a specific rate. If we take into account only O(A.) contributions
to this and follow standard thinking in our multiplicatively renormaliza-
tion group scheme, the well known asymptotic end-to-end distance for the
weakly SARW in d = 4 follows. Moreover, from our method, the exponent
of the logarithmic correction involved is expressed in terms of conditional
expectations for measures of events for random walks inside the smallest
hierarchical lattice cosets in the lattice, that upon calculation, give the well
known exponent. Recently, an alternative rigorous proof has been given,
provided the properties of the Green function are known, in the SUSY
field theoretical approach.'131 We assume the Green function to be
unknown.

Let <n i O I ( r )> be an a-moment of a CTRW; it is known that the only
finite moments for diffusive random walks on our hierarchical lattice
correspond to 0«x<2. (13) Here T is the running time of the process. This
range of a values is used to obtain the end-to-end distance in the following
proposition.

For d = 4, up to 0(A), the generated renormalized local times (mass
for the field or killing rate for the process), from applying the renormaliza-
tion-group map on the interaction in a multiplicatively renormalization
group scheme, is such that the asymptotic behavior of the end-to-end dis-
tance for a weakly SARW that penalizes the intersection of two random
walks is 7'/2log1/8 T.
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This conjecture comes from the following thinking. After applying (p)
stages the renormalization-group transformation on <iv< x(T'))1 /° ' we have

where L^2, integer, is a scale (from the hierarchical lattice) used in the
renormalization group map. Besides, we have chosen a system of units such
that for/)=0, T=l. Hereafter, <vva(l)>1/ot(0) = /) is a constant called the
diffusion constant. Here, we are following the standard procedure for
scaling length-type magnitudes.(16) Moreover, by <wa(T)>1 / 0 ! we mean
<wa(r)>1/01<;'). Since in renormalizing the lattice we divide every length,
including the end-to-end distance, by L, then, upon p iterations, Eq. (1)
follows. This is exactly what is done in scaling correlation lengths but used
here on the end-to-end distance, both length-type magnitudes. So Eq. (1)
becomes

On the other hand

where yf = y^L2, yl is presented below and by T we mean T(p\ Here we
have included, up to 0(1), the contributions to renormalized local times
due to two-body interactions in the original random walk (see refs. 9 and
10); namely, yl and 1((). In this scaling factor, the O(k) term comes from
the leading contribution to the mass (or killing rate of the process) seen as
new rescaled holding times.

From this follows

For 0 = 2, d = 4 and up to order (A( ; >)2 , follows A(''+1) = A(;)-^2(A(l' ')2 (see
ref. 10). Here yl and f!2 are conditional expectations of two-body inter-
actions (or double crossing in a random walk), one for yl and two for fJ2,
inside the smallest cosets in the hierarchical lattice, provided that renor-
malization group is applied such that yl renormalizes to holding times and
/?2 renormalizes to two-body interactions (see ref. 10).



which is the asymptotic behavior of the end-to-end distance.
It only remains to know the value of (y*//?2)- Actually we can calculate

y* and /?2 from their definitions (see Table in ref. 10). We can prove that
yf/2/?2~§, provided the number of points inside a smallest coset of the
hierarchical lattice is larger than the number of jumps performed by the
random walk inside the very same coset, even if the second one is large,
as we consider it is. Besides, the jumping rate for the process r is set such
that a well defined diffusive Green function follows for this hierarchical
lattice, provided the killing rate is introduced critically.112)

In the next Section we test this analytical conjecture on continuous-
time weakly SARW by Monte Carlo experiments on continuous-time
SARWs on an integer lattice Z4. Both random walk models are in the same
universality class, therefore identical logarithmic corrections are expected.

3. COMPUTER SIMULATIONS

In this section, we present the results of the Monte Carlo computer
simulations we have performed to test the asymptotic behavior of the mean
square end-to-end distance and the mean square gyration radius reported
in Section 2, as functions of the running time T for continuous-time self-
avoiding random walks with exponentially distributed waiting times on a
4-dimensional hypercubic lattice Z4.

Let con be an n-step self-avoiding random walk with initial point at the
origin of the hypercubic lattice Z4. We associate with con the running time

where t, (; = (),...,« —1) are exponentially distributed random values—
waiting times of the sites of a walk, thus producing a continuous-time
self-avoiding random walk. We denote a random walk a>n together with
its running time T as a>n T. In order to calculate the distributions of the
mean square end-to-end distance and the mean square gyration radius
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Introducing the solution of this recursion into Eq. (4), we obtain

In Eq. (5) we have assumed;? (stage we have applied the renormalization
group map) to be large enough so A-1 <sc fii(p). Taking the asymptotic
limit p -> co (i.e. p -»log T) we rewrite Eq. (5) as



denoted hereafter as (a>2(T)~) and <w 2 ( r )> , we need at first to intro-
o .

duce the procedure we use to generate self-avoiding random walks on Z .
A method for obtaining <a>2(T)> and (co^T1)) is described later in this
section.

Straightforward algorithms for generating self-avoiding random walks
of a given number of steps n, for example non-reversed simple sampling,*1'
are impractical since the computer time required to generate a single n-step
self-avoiding walk grows exponentially with n. In our simulations we use
the recursive Alexandrowicz dimerization algorithm*18) which is the most
efficient known static algorithm for generating a single self-avoiding walk
in any dimension. This algorithm has been applied to Monte Carlo simu-
lations of self-avoiding random walks in 2- and 3-dimensional calcu-
lations.*19'20) In brief, the idea of dimerization algorithm is as follows. If
the number of steps n is less than the "Alexandrowicz length" n0, a self-
avoiding walk is generated by the non-reversed simple sampling. If n ^ «o>
two walks of length n/2 are generated and concatenated. If the resulting
walk has no self-intersections, it is self-avoiding, otherwise the procedure
is resumed from the scratch. The algorithm is recursive: if the subchains of
the length n/2 are still longer than «0, the subchains themselves are
generated using the same algorithm. The main advantage of the dimeriza-
tion algorithm is that it is unbiased, i.e. each possible self-avoiding walk of
a given number of steps has the same probability to be generated.*17' The
estimated computational time for generating a single walk of the number
of steps H is of order d0ndll°e2" + d2, where d, (/ = 0, 1,2) are independent
of «.(17'22> In 4-dimensional case it is expected that dl = Q (if the usual
scaling assumptions hold true),*17' thus providing a polynomial growth of
computational time per single self-avoiding walk. The value d0 depends
upon the "Alexandrowicz length" n0. Our simulations show that the usage
of n0 less than 10 significantly slows down the calculations in comparison
with larger values of n0. On the other hand, if n0 is comparable with n,
the dimerization algorithm looses its advantage because of the above-
mentioned exponential growth of computational time. Hence, there exist
some optimal, dimensional dependent values of n0. In our simulations we
used «0 = 30.

A method we use to obtain the distributions of <co2(T)> and < f t j 2 ( T ) >
utilizes the "windows" refinement introduced in ref. 19. We choose the
interval of running times [rmin, Tmi01] for which we are going to estimate
<co2(T*)> and (co2(r)), and divide it into equal-sized "windows"
ITn^ + iL ' = !,...,/, TQ = Tmin, r/=rmax. We specify a "window"
[Tt, T, + 1] and, in turn, divide it into M equal parts. Then, using the
dimerization procedure we generate statistical samples of random walks
«„_ T of all possible number of steps n (of Lc = 100000 walks for every n).
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In practice we are restricted to some interval of the number of steps
nmm • • • / 3 max- F°r a given subinterval of length AT=(Ti+l — Ti)/M inside
the "window" [T,., r,.+ 1], we calculate the values of <co2(r» and
(a>g(T)y, taking into account only that walks a>n<T whose running times
lie within this subinterval. More precisely, denote as Nn (n = nmin,..., «max)
the number of «-step continuous-time self-avoiding random walks (chosen
among Lc= 100000 walks generated for given n) whose running time lies
within the given subinterval [T, T+dT~\, and as co^'j? the mean square
end-to-end distance for the A:th walk (k= 1,..., Nn). Then we can write

The similar relationship holds for the distribution of gyration radius
<a$7-)>.

In practice, the interval lTmia, !Tmax] and the above mentioned values
/, M, nmla, nraax are a priori arbitrary quantities.(20> However, in the model
under consideration there exist some reasonable limitations on the choice
of n^a and «max. Indeed, given a continuous-time self-avoiding walk a>n T

of the number of steps n, the mean value of its running time T is also n,
since the mean values of each /, are 1, in accordance with the exponential
distribution of t,. The main contribution to (a>2(T)y and (a>2

g(T)'), thus,
is made by the walks con T whose number of steps n are relatively close
to T. The restrictions on the interval [rmin, rmax] are imposed by the per-
formance of a computer. We have chosen 71

min = 40, rmax = 180, 1=1,
M= 1000. Therefore, we used 1000 subintervals with z)J = 0.02 in each of
the seven "windows" of length 20. The "windows" on the T axis, the inter-
val of the numbers of steps of self-avoiding walks n^ • • • «max, and the
chain lengths for every n, «mjn<«<«m a x , are listed in Table I.

Our programs were written in Borland C++ and run on 60 MHz
Pentium system. In order to generate a random choice of the consecutive
sites of a self-avoiding walk in the dimerization algorithm, as well as
exponentially distributed waiting times ?,• at each site of a walk, we used the
pseudo random number generator ran3.(25) We have performed a test of the
subroutine of our main program that generates SARWs by the dimeriza-
tion algorithm, together with exact enumeration of the SARWs on Z4. The
results are presented in the Appendix 1.

The main goal of our Monte Carlo simulations concerning continuous-
time self-avoiding random walks was to verify the heuristic result of
Section 2 on the asymptotic behavior of <(y2(r)> and <o>2(r)>. We have
obtained the representative ensembles of the squared end-to-end distances
and gyration radii for the continuous-time self-avoiding random walks—

822/90/3-4-17
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Fig. 1. Mean square end-to-end distance for continuous-time sell-avoiding random walks
with exponentially distributed waiting times, as a function of running time T, in dimension
four. Each small dot represents the value of the mean square end-to-end distance obtained by
averaging over about 2000 walks whose running times lie within the subinterval of length
AT=0.02. The figure depicts 7000 points obtained in our Monte Carlo experiments, and the
best-fit curve DT(\n T)1 with D= 1.1780 and a = 0.2508 (solid line).

774

Table 1. Parameters of Computer Experiments

"Window""

40 ... 60
60 ... 80
80. . . 100

100... 120
120.. . 140
140- . . 160
160... 180

#1

10
10
10
20
20
20
40

N2

120
200
220
220
240
240
240

Chain Length

50000
50000
50000
50000

100000
100000
100000

" "Window" is the interval of length 20 on the T axis. «,„„, and nmux

fix the interval of lengths of SARWs used to obtain the mean values
for a given "window." The column "N," shows the number of
SARWs of each length within the interval [nm i n , nmilx] that we
generated in our Monte Carlo experiments.
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about 2000 walks for each of the subintervals of the length ^7=0.02 on
the interval [Tmin, rmax]. Using Eq. (7), we calculated the values of
(a>2(T)y and (a)2

K(T)y. The variances of the squared end-to-end distances
and gyration radii for all of the mentioned subintervals were also recorded
(see Appendix 2).

To test the result obtained in Section 2, we fitted our data to the func-
tional relationships

Fig. 2. Mean square gyration radius for continuous-time self-avoiding random walks with
exponentially distributed waiting times, as a function of running time T, in dimension four.
Each small dot represents the value of the mean square gyration radius obtained by averaging
over about 2000 walks whose running times lie within the subinterval of length /IT =0.02. The
figure depicts 7000 points obtained in our Monte Carlo experiments, and the best-fit curve
D,T(\n 7T« with 0 = 0.1932 and a = 0.2531 (solid line).

with the a priory unknown parameters D, a, Dg, and a.g, having applied the
nonlinear weigthed least-square method and the Levenberg-Marquardt
minimization procedure with additive damping.'261 We have got the fol-
lowing values of the parameters: a = 0.2508+ 0.0059, £> = 1.1780±0.0107,
ag = 0.2531 +0.0037, DK = 0.1932 + 0.0011 (99% confidence intervals). The



goodness of the fit of the models'251 was estimated as 0.639 and 0.138,
respectively. Figures 1 and 2 reproduce our numerical data and the best fit
curves with the above mentioned values of a, D, ag, and Dg, We remark
that the value of a = 0.2508 is in very good agreement with its theoretical
counterpart 0.250 obtained in Section 2 of the present paper.

4. SUMMARY AND DISCUSSION

In this paper, we use a real space renormalization-group map on the
space of probabilities00' to study the asymptotic end-to-end distance of a
continuous-time weakly SARW that penalizes the (self-(intersection of two
random walks on a hierarchical lattice, in dimension four. From this, a
conjecture of the end-to-end distance for a weakly continuous-time SARW
on a hierarchical lattice is derived. This gives a new probabilistic meaning
to the exponent of the logarithmic correction based on physical intuition.

We have performed Monte Carlo computer simulations of continuous-
time self-avoiding random walks in dimension four. The main goal of these
computer experiments was to test our conjecture of Section 2 on the
asymptotic behavior of the mean square end-to-end distance (co2(r)> and
gyration radius (co^T)) as functions of the running time T of the
stochastic process. Our simulations have covered the interval of running
times 40 < T< 180. We have fitted our data on <co2(T)> and <w^7)> to
the functions DT(\n T)« and D^T(ln T)"* respectively. The best fit was
obtained at a = 0.2508 ±0.0059, D= 1.1780 ±0.0107, ag = 0.2531 ±0.0037,
Dg = 0.1932±0.0011 (99% confidence intervals).

In general, the problem of establishing the asymptotics of such quan-
tities as the mean square end-to-end distance is not easy in four dimen-
sions. Grassberger et a/.(27) have recently presented the results regarding the
behavior of the mean square end-to-end distance for discrete-time SARWs
on Z4. In the model studied in ref. 27 there is no other parameter
associated with SARW except for the number of steps n. Given a set {co(

n
k}}

(k= 1,..., Nn) of Nn computer-generated SAWRs of the number of steps n,
the mean square end-to-end distance as a function of « was calculated in
ref. 27 as
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It was shown in ref. 27 that the subleading corrections to the leading
asymptotic <o>2(«)> ~«(ln «)" noticeably affect upon the value of a for
which the best fit to the data of computer simulations may be obtained.



However, in the present paper we deal with a distinctly different stochastic
model. Indeed, there is an additional parameter in our model associated
with a SARW—the running time T as a sum of exponentially distributed
waiting times. To obtain the distribution of the mean square end-to-end
distance (co2(T)~y as a function of T, we average the values of the squares
of end-to-end distances for the SARWs of various numbers of steps
provided that their running times lie within the given interval [T, T+AT~\
(see Eq. (7)). By contrast, in the model(27) the averaging is performed over
all generated walks with the fixed number of steps n (see Eq. (8)). Our aim
in the present work was to find the best fit of the form DT(\n T)x (which
was conjectured in Section 2) for the continuous-time SARWs, so we did
not analyze the subtle details of possible logarithmic corrections to this
leading asymptotic, if any. Note, however, that theoretical predictions of
the behavior of <a> 2 ( jT)> are in very good agreement with the results of
our computer Monte Carlo simulations. This, together with the analytic
results on hierarchical lattices,"3' lead us to think of the form DT(\n T)*
for <«2(r)> as highly probable. Further computer studies may help to
understand the role of possible corrections to the formula DT(\n T)*. They
require the investigation of a larger interval of running times T than the
one studied here, and more powerful hardware than the 60 MHz Pentium
system.

APPENDIX 1

In order to test our main computer program and pseudo random
number generator ran3<25) we have performed the exact enumeration of
discrete-time self-avoiding random walks can on a hypercubic lattice Z4. To
this end, yet another program has been developed to specify the exact
values of mean square end-to-end distance <co2), mean end-to-end dis-
tance <o>>, mean square radius of gyration (cw2.), and mean radius of
gyration <o>g> for random walks of number of steps n = (>••• 12. In this
program we utilize the simple symmetry reasons that it suffices to take into
account only that walks on Z4 whose first step is made in the positive X-
direction (this reduces running time of a program by factor 8) and second
step is made only in the positive X-direction or in the positive Y-direction
(thus decreasing the running time of a program about 7/2 times more). The
results of exact enumeration are listed in Table II. The total number of self-
avoiding random walks (first column in Table II) is consistent with the
data of other authors. (22~24) However, the exact values of <o> 2>, <o>>,
<co2}, and (<*>gy were not computed in refs. 22-24. We have performed the
calculation of these values along with the enumeration of self-avoiding ran-
dom walks. These values are given in the columns of the Table II named
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<Cc°2)ff£' (<*>} EE, <^g>£i-. and <«g>££, respectively. To test our main
computer program (specifically, the subroutine that generates self-avoiding
random walks), we have also performed Monte Carlo estimations of <o>2>,
<co>, <&>2>, and <co^> by dimerization algorithm for statistical samples of
100000 self-avoiding walks for « = 6 and of 500000 walks for « = ? • • • 12.
To observe statistical deviations, we run our program three times for every
n, each time recording the above mentioned mean values. The results of
Monte Carlo estimations are given in Table II in the columns named
(&>2>zM> <w)DA' (w^DA' and (^g^DA- One can see a good agreement
between theoretical and estimated values of <o>2>, <«>> , («2>, and <co?>,
which confirms the correctness of the computer program and of the pseudo
random number generator that we used in our simulations.

APPENDIX 2

In this paper we use the dimerization algorithm to generate self-avoiding
random walks on Z4. It has been rigorously proved'17' that this algorithm
produces statistically independent SARWs «„, uniformly distributed on the
set of all SARWs of a given number of steps n. This is the advantage of the
dimerization procedure: other highly efficient methods of SARW generation
(such as the pivot algorithm'2" or the recursive and randomized implemen-
tation of the enrichment method'27') give a sequence of self-avoiding
random walks that are not statistically independent. Statistical inde-
pendence of a sequence of SARWs implies that simple standard methods
for estimating the mean values of random variables and their variances
apply.

Let £ be a real-valued random variable (for instance, the square end-
to-end distance of a SARW) with mean <£> and xlt..., xn be a sample of
its n independent observations. The random variable

where
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(the sample mean) is the natural estimator of < £ > ; its variance can be
estimated as



with xw = xl, K(1) = 0. In our computational experiments we utilized
Eq. (11) and Eq. (12) to calculate the distributions of the mean square end-
to-end distance (co^T1)) and gyration radius <o> 2 ( r )> for continuous-
time self-avoiding random walks. We note that the recurrent relationships
(11) and (12) substantially reduce the hardware requirements since it is not
necessary to keep large arrays of the square end-to-end distances and gyra-
tion radii in the memory of a computer in order to estimate their variances.
Once the values <co2CT)> and {co2g(T}') and their variances are computed
for all subintervals of the length AT = 0.02 on the interval [T^, Tmax],
a nonlinear least-square method can be applied to calculate the covariance
matrix and then to find the values of the fitting parameters and their
confidence intervals.'25'26)
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